Тело, которое находится в потенциальном поле сил (а электростатическое поле, как уже известно, является потенциальным), обладает потенциальной энергией, за счет которой силы поля совершают работу. Как известно из классической механики, работа консервативных сил совершается за счет убыли потенциальной энергии. Значит работу сил электростатического поля можно считать как разность потенциальных энергий, которыми обладает точечный электрический заряд Q0 в начальной и конечной точках поля заряда Q: (1)
откуда мы видим, что потенциальная энергия заряда Q0 в поле заряда Q равна
Она, как и в классической механике, определяется неоднозначно, а с точностью до произвольной постоянной С. Если считать, что при перенесении заряда в бесконечность (r→∞) потенциальная энергия обращается в нуль (U=0), то С=0 и потенциальная энергия заряда Q0, который находится в поле заряда Q на расстоянии r от него, равна (2)
Для зарядов одинакового знака Q0Q>0 потенциальная энергия их взаимодействия (в данном случае - отталкивания) положительна, для разноименных зарядов Q0Q<0 и потенциальная энергия их взаимодействия (в данном случае - притяжения) отрицательна.
Если поле создается системой n точечных электрических зарядов Q1, Q2, ..., Qn, то работа электростатических сил, которая совершается над зарядом Q0, равна алгебраической сумме работ сил, обусловленных каждым из зарядов в отдельности. Поэтому потенциальная энергия U заряда Q0, который находится в этом поле, равна сумме потенциальных энергий Ui, каждого из зарядов: (3)
Из формул (2) и (3) следует, что отношение U/Q0 не зависит от Q0 и является поэтому энергетической характеристикой электростатического поля, которая называется потенциалом: (4)
Потенциал φ в какой-либо точке электростатического поля есть физическая величина, определяемая потенциальной энергией единичного положительного заряда, помещенного в эту точку.
Из формул (4) и (2) следует, что потенциал поля, создаваемого точечным зарядом Q, равен (5)
Работа, которую совершают силы электростатического поля при перемещении заряда Q0 из точки 1 в точку 2 (см. (1), (4), (5)), может быть выражена как (6)
т. е. равна произведению перемещаемого заряда на разность потенциалов в начальной и конечной точках. Разность потенциаловдвух точек 1 и 2 в электростатическом поле определяется работой, которая совершается силами поля, при перемещении единичного положительного электрического заряда из точки 1 в точку 2.
Работа сил поля при перемещении заряда Q0 из точки 1 в точку 2 может быть выражена как (7)
Приравняв (6) и (7), придем к формуле для разности потенциалов: (8)
где интегрирование можно производить вдоль любой линии, которая соединяет начальную и конечную точки, так как работа сил электростатического поля не зависит от траектории перемещения.
Если перемещать заряд Q0 из произвольной точки за далеко пределы поля, т. е. в бесконечность, где, по условию, потенциал равен нулю, то работа сил электростатического поля, согласно (6), A∞=Q0φ, откуда (9)
Значит, потенциал — физическая величина, которая определяется работой по перемещению единичного положительного электрического заряда при удалении его из данной точки поля в бесконечность. Эта работа численно равна работе, которую совершают внешние силы (против сил электростатического поля) по перемещению единичного положительного заряда из бесконечности в данную точку поля.
Из выражения (4) видно, что единица потенциала — вольт (В): 1 В равен потенциалу такой точки поля, в которой заряд в 1 Кл обладает потенциальной энергией 1 Дж (1 В = 1 Дж/Кл). Учитывая размерность вольта, можно показать, что введенная ранее единица напряженности электростатического поля действительно равна 1 В/м: 1 Н/Кл=1 Н
·м/(Кл•м)=1 Дж/(Кл•м)=1 В/м.
Из формул (3) и (4) следует, что если поле создается несколькими зарядами, то потенциал данного поля системы зарядов равеналгебраической сумме потенциалов полей всех этих зарядов: